
Workload Balancing and Inventory Minimization
for Job Shops

Reprinted from
The Journal of INDUSTRIAL ENGINEERING

April, 1968

Workload Balancing and Inventory Minimization

for Job Shops

George SchusseJ,1 SENIOR MEMBER, AilE

Manager, Information Systems Division, Brown Engineering, A Teledyne Company

The purpose of this article is to discuss
a specific algorithm for forecasting and
balancing the workload in a job shop.
This algorithm provides a procedure
for combining economic analysis and
workload forecasts into an efficient
economical schedule for a job shop.

The studies resulting in the prepara
tion of this article were performed in
an aerospace company possessing a
rather large and complicated job shop.
The complexity of the jobs passing
through the job shop was such that in
some cases six to nine months of flow
time was required to process a single
job in its entirety. In almost all cases,
the planning and release of orders oc
cUlTed months ahead of the actual time
that the finished product was needed,
because no method of forecasting and
controlling the workload in the job
shop existed, and, in order to provide
efficient utilization of labor and ma
chines, it was necessary to have a large
inventory of work waiting behind every
machine on the floor. This unneces
sarily large inventory enabled most
machines to be used continually and
most jobs to be turned out on a timely
basis. This situation of excess inventory
and its associated carrying cost is
typical in the aerospace industry and
may be to a limited extent character
istic of all job shops.

1 Formerly Executive Assistant to the Cor
pora te Manager of Management Information and
Data Processing, Northrop Corporation.

194

Management determined the release
dates of orders so that there was almost
always plenty of work for every ma
chine to perform and almost all work
was performed on time. ·Whenever a
machine would encounter an idle pe
riod, its operator would simply reach
forward into time and complete work
ahead of schedule. As a result of this
policy, it was felt that, with a better
method of forecasting the individual
workload on each type of machine and
with a method of leveling out the fore
casted peaks and valleys of utilization
on each machine, it would be possible
to maintain efficient and timely pro
duction in the shop with a great reduc
tion in inventory levels. By controlling
the release dates and cutting back on
the early order release times, manage
ment can reduce the cost of maintain
ing inventory in a job shop. If the
average time for an order to pass
through the job shop is reduced by a
certain percentage, it has the same
effect on the costs of maintaining in
ventory as reducing the average inven
tory level by the same percentage.

Accordingly, this article presents a
method of manipulating and handling
information relating to the forecasts of
workloads in a job shop. It does not
discuss priority rules and other sub
problems of running a job shop. Many
authors have written ample amounts
on these various problems. This article
discusses the general problem of sched-

uling and workload balancing in a
large job shop and offers an algorithm
that performs these functions and is in
such a form that a computer program
can be written fairly simply from the
steps mentioned in the algorithm. The
objective is to determine latest release
dates that are consistent with schedule
requirements. A survey of the literature
shows that the method presented here
uses less restrictive assumptions and
handles more relevant variables on a
heuristic basis than any other presen
tation the author has seen.

The basic approach discussed here is
to consider the representation of in
formation as a two-dimensional matrix.
Along the vertical axis of this matrix
we find the various machines or sub
assembly points of the job shop listed,
while along the horizontal axis vve have
equal increments of a time unit marked
off. For the purposes of this article, we
will assume this time unit to be one day
although it could also be one week in a
very large job shop where the primary
purpose of this algorithm would be to
determine the release dates of each
order.

The vertical coordinate on the matrix
represents all of the shop's machines or
load points and the horizontal coor
dinate covers the total period of time
scheduled. Each cell of the matrix can
be viewed as a pigeonhole in which we
store relevant information concerning
work to be done on a machine at a cer-

tain time. This information consists of
items such as the job numbers that
have been assigned to each cell and the
hours of work each is expected to take.
Once we have this matrix, the basic
procedure is to load jobs into it as if
we had unlimited capacity in each cell
of the matrix. After this initial loading
is completed, another pass through the
matrix is performed, this time with
the objective of smoothing out the un
even workload which resulted from the
initial loading.

OBJECTIVES

Several major objectives can be met
by the implementation of the schedul
ing method outlined in this article.

1. The use of the routine outlined
below in conjunction with powerful
modern computers will permit long
range workload scheduling that is
typically not now possible for most
firms. All of the advantages of being
able to forecast or anticipate future
workload will accrue to the user of such
a routine.

2. Through the use of cost calcula
tions and heuristic logic, it is possible
to attempt to satisfy several different
objectives. One of the main reasons one
does not find the job shop problem
"solved" in the literature is that before
a problem may be explicitly solved it
normally has to be formulated in terms
of an objective function which can be
maximized or minimized. The trouble
with the problem of scheduling a job
shop is that there are many different
objectives which can and must be met
in order to have an efficient flow of
work through the job shop and operate
at minimal cost. For example, one may
wish to minimize anyone or some com
bination of the following variables:
average job lateness variance of job
lateness, average work-in-process in
ventory, total setup time, total labor
cost, or machine idle time.

By using cost calculations to help
level (or balance) out the workload, the
routine achieves the objective of mak
ing efficient use of labor and machine
productive capabilities. In addition to
efficient usage of shop capabilities,
however, via the process of compress-

April, 1968

ing work schedules and scheduling
backwards, the routine attempts to
satisfy a primary objective of mini
mizing work-in-process inventory carry
ing costs. The true realization of lower
inventory carrying costs, however, only
comes about through the shorter flow
times that are possible when manage
ment uses the improved schedule in
formation to reduce flow times and
eliminate unnecessarily large safety
factors.

3. Another important use of the
workload balancing scheduler is to
generate vastly improved management
information over what is typically
available to job shop management.
Through the use of the evaluative
power of a computer, routine cost cal
culations, that would be impossible for
clerks to perform, can become a regular
part of production scheduling. Freed
from the necessity of performing these
calculations, management can focus
attention on important problems that
are beyond the scope of the computer
program to handle. The system should,
however, pick out these problems from
the large amount of minute detail re
quired for scheduling and present them
in a form that is amenable to manage
ment analysis. Also, because the work
load balancing scheduler performs cal
culations for a time period in the fu
ture, the potential problem areas can
be highlighted early enough for man
agement to take action to correct them.

IMPORTANT CONCEPTS

Three concepts are of basic impor
tance to the algorithm presented below,
and these concepts are discussed here in
order to give the reader more insight
into the way they are used in the
scheduling routine.

Matrix Representation of Information

The first of these concepts is the idea
of the familiar Gantt chart or what is
here referred to as the two-dimensional
matrix (Matrix 1).

With days listed across the top and
machines listed along the side, a row
out of the matrix may be interpreted
as the daily schedule for one machine
over a period of days while a column

The Journal of Industrial Engineering

Matrix 1. Information array

Days

1 2 3 4 5 6 7 8 9 10 11

---'---------
4

from the matrix can be considered as
one day's schedule across all of the
machine or subassembly loading points
in the shop. As each job is scheduled
into a cell or combination of cells, cer
tain relevant information about that
job, such as its number, any predeces
sor operation and relevant cost infor
mation, is stored in the cell. If the total
number of days we are scheduling is D,
the total number of machines or load
points is M, and the total amount of
information stored in each cell is N,
then we have a DXMXN size array of
information. This matrix represents a
dispersion of the necessary information
for accomplishing scheduling and load
ing. This matrix is used as part of the
algorithm for laying out the production
schedule for a generalized job shop.
This requires the capability of main
taining the strict sequencing of a part
from one machine to the next. How
ever, the typical assumption that any
product may only be made by one
strict sequence of machines is not en
tirely required. By evaluating which
of two alternative identical machines
has the lighter load, the algorithm can
effectively evaluate different produc
tion machine sequences. The general
problem of evaluating different produc
tive sequences over different non-iden
tical paths for each product in a job
shop, however, presents a combinatorial
problem of such magnitude that no
formal solutions exist.

The use of this matrix also enables
several economic considerations to be
analyzed. Part-to-part comparisons can
be made when a machine is overloaded
in order to choose the best part to re
schedule. Since we are working back
wards from fixed delivery dates, the
method presented in this article as-

195

sumes that any rescheduling of a part
can only be done earlier in time, since
most managements would not accept
a scheduling method which had a de
signed-in capability for late deliveries.
Therefore, every time that a job is re
scheduled from the unlimited capacity
matrix, a cost due to overtime payor
increased inventory from a longer flow
time is incurred. As a secondary objec
tive, the scheduling algorithm can eval
uate the costs due to schedule changes
and print out a list of those jobs which
incur the highest percentage increase in
costs because of insufficient in-house
capacity. Via this procedure, the com
puter can print out a list of problem
exceptions that it was not programmed
to handle automatically. For example,
if the accomplishment of a certain job
required a large amount of overtime,
this fact would be brought to manage
ment's attention via a print-out list.
This job could then be analyzed by
planners to see if it could be subcon
tracted.

Priority Dispatching Rule

A second important concept in the
scheduling algorithm is the use of a
priority dispatching rule to determine
which jobs should be rescheduled when
an overloaded condition exists on any
work facility.

Priority dispatching rules are typ
ically used in a different context. Much
work has been done toward determin
ing which heuristic rule provides the
best priority dispatching ranking for
job shops. Typical of research results
are works by Conway and Gere (4), (5),
and (7). In the context discussed by
these authors, a priority dispatching
rule is used to determine the order in
which jobs waiting in line at a facility
should be processed.

By definition in the scheduling
algorithm, no job is late because jobs
are scheduled backwards from on-time
dates allowing sufficient setback times
for work flow, travel time, etc. Never
theless, a priority ranking rule can be
applied to the jobs in a given work cell
and even though no job is late, a rank
ing will result. The highest-ranked jobs
will be those that are the nearest to
being late. Accordingly, the scheduling

196

algorithm uses a priority ranking rule
to decide which of those jobs in an over
loaded cell should be rescheduled earlier
in time. The job that has the highest
priority is closest to being late and
therefore is the one which is chosen to
be released earlier in time, hopefully
reducing the chances that it will be
late. The use of such a priority rule for
choosing vvhich jobs are to be resched
uled helps the scheduling method to
satisfy another objective, that of min
imizing the late time of the jobs pro
cessed through the job shop.

The priority dispatching rule used
in Step 3 of the scheduling algorithm is
based upon the work reported by Con
way in (5). This work evaluated most
common dispatching rules and sug
gested that a combination of the mini
mum slack time per operation rule and
the minimum imminent processing
time rule would be the best. His anal
ysis indicated that an equally weighted
linear combination of the two rules pro
vided a new rule which is generally
optimum:

Priority = P t + ST/O.

P t is the processing time on the Im
minent operation and ST /0 is the
slack time per operation remaining.
This slack time is equal to the total
schedule time until due date minus the
total remaining scheduled work time
for the release. The highest priority is
achieved by that release with the
smallest numerical ranking via the
priority rule. It is important to notice
that exactly which priority rule or what
criteria are used to determine which
job is relocated is not important to the
central theme of this article. As long as
we have some manner of picking among
the jobs we can proceed to applying the
algorithm.

logical Time Period

Another important concept m the
scheduling procedure is that of the
L TP or logical time period. The need
for such an entity arises because a realis
tic simulation has to take into account
job continuity from one day until the
next. A daily period of time is an ar
bitrary measure and there may often
be orders that require several days of

The Journal of Industrial Engineering

work on anyone machine or that are
only partially completed in one day.
An LTP is a series (one or greater) of
adjacent whole days which are so de
fined that any job operation in the
L TP both starts and finishes in the
LTP. Of course, an individual day may
be an LTP and is the smallest such
unit. The LTP provides the basic en
tity to which the scheduling algorithm
allocates jobs. The advantage of using
the LTP concept is that it permits
simplified handling of the job continu
ity problem.

Since the workload balancing sched
uler is a long-range forecast device,
whose primary purpose is to determine
release dates for orders, it has no need
to schedule to very small periods of
time, such as an hour. By constantly
scheduling with safety pad times, a
small amount of juggling of schedules is
possible by floor supervision. This fact
makes it possible for the algorithm to
ignore the ordering of jobs on an intra
L TP basis in small L TP's. When we are
rescheduling a very large job that runs
for several days on a machine, we look
for or create a new LTP which is sev
eral days long and can accommodate
this job in addition to the other as
sorted jobs already scheduled in the
period. This feature is necessary if
large holes of available time are not to
be left in the schedule because of re
scheduling maneuvers.

"\iVhen the scheduling algorithm is
loading jobs that require a small per
centage of the daily available time on
any machine, it ignores the problem of
continuity of jobs within a day. This
will be taken care of by the detailed
scheduling done by shop foremen.
However, when scheduling a job that
takes greater than 25 percent of the
daily capacity on any machine, the
algorithm searches for two or more ad
jacent days or L TP's having a sum of
available times to work the job. The
length of the period of time searched
depends upon the percentage of daily
capacity required by the job. For ex
ample, if machine capacity of 80 per
cent of one day's time is required on
an order, then the algorithm might
search for tvvo adjacent days which
have this time available. These days

Volume XIX • No. 4

could be combined into an LTP and
the job loaded at the end of the LTP.
The smaller jobs from this last day
would be rescheduled into the first day
(on an L TP of less than seven days
length, this step would not be per
formed until the very last step in the
algorithm). By the use of the LTP, the
scheduling algorithm allows for the
possibility of small changes without
ha ving to reflect the small changes
through the entire system. Without the
use of a concept analogous to the LTP,
a computer program that performed
workload scheduling and forecasting
would be much more complex than the
one presented in this article. The con
cept of the L TP will become clear as
the reader proceeds forward through
the scheduling algorithm.

DEFINITIONS

The following definitions are pre
sented in logical groupings. The defini
tions should be read carefully before
proceeding to the algorithm.

Index Numbers

d = day number. This variable
performs an indexing func
tion.

Di = list of completion due
dates for each release of a
product. This variable is
part of the input informa
tion.

i= order number. An order is
a group of identical parts
or products that are made
at the same time and
follow the same routing
through the job shop. In
dex variable having a one
to-one correspondence with
order numbers.

j = machine number. Index
variable having a one-to
one correspondence with
an individual machine or
subassembly operation. 2

2 The terminology used in this article is from
Gere (7) and others: "Job refers to the work that
is performed, and also the physical entity that is
the object of the work. A job comprises one or
more tasks or operations. We say that each op
eration is performed on a machine." A statement
such as the following can be made: the task (i, k)

April, 1968

J;=a series of Ki dimensional
vectors giving the logical
machine sequence for each
release. This variable is
part of the input informa
tion. Each element of Ji is
j and is assumed unique.
The logic of the scheduling
algorithm, however, can be
expanded to include evalu
ations of alternative j's
for the same k.

k = the index of opera tions
running from 1 through K.
This variable performs an
indexing function.

K;=number of operations re
quired for ith release. Cal
culated variable derived
from J i •

task (i, k) = a task. Refers to the kth
operation on order i. An
operation is a function
performed by a machine or
subassembly point to an
order.

Schedule and Capacity Records

Cjd = regular time capacity ma
trix in hours per day. (The
amount of time available
any particular day on a
machine before it is loaded.)
Special factors such as
vacations and reduced effi
ciency are included. The
normal conditions capac
ity is Cj • This variable is
part of the input informa
tion.

Ojd= overtime capacity matrix.
This is analogous to Cjd

except it pertains to the
overtime capability. The
normal overtime capacity
is OJ. This variable is part
of the input information.

Ljd = unlimited capacity initial
loading matrix. Variable
used in calculation. The
final value for Ljd is the
forecasted, balanced work
load. Output and input
variable.

which consists of the kth operation on the ith re
lease or order must be performed on the jth ma
chine.

The Journal of Industrial Engineering

GJd = committed overtime ca
pacity matrix. The final
value for this is the over
time schedule. This vari
able is part of the output
information.

Hik = setup and labor production
hours of a task (i, k). This
variable is part of the in
put information.

Rescheduling Operations

L TP = logical time period. The
L TP consists of a series
(one or greater) of adja
cent whole days which are
so defined such that any
task (i, k) in this LTP
both starts and finishes in
the LTP. An individual
day may be an L TP and is
the smallest such unit.
The L TP provides the ba
sic entity to which the
scheduling algorithm allo
cates jobs. Until the last
step of the scheduling
algorithm LTP's are not
subdivided, although they
may be combined so that
two or more L TP's form
one new larger one.s

n=the length of an LTP. It
is the number of days in
the LTP.

s = the minimum length (in
days) of the requisite adja
cent LTP's used in the
search process of reloca ting
a task (i, k).

Zj= percentage/lOO of daily
capacity on an operation.
If rescheduling the top
priority job causes a greater
idle factor than z, the
other jobs (or combina
tions of jobs) should be
analyzed for rescheduling.
This is an input variable
which is best set by experi
mentation on the system.

Cost Evaluations

a=number of days of early

3 Because an LTP can cover several days,
there may be several values for the index "d"
that correspond to one LTP.

197

release required to sched
ule an order on any opera
tion. (Incremental days for
this operation, not cumu
lative.) This variable is
used in calculating A.

Mik=material costs of any re
lease at any operation.
(Incremental, not cumu
lative.) This variable is
part of the input informa
tion.

rj= hourly rate applying to the
jth labor operation (in
cluding variable over
head). This variable is
part of the input informa
tion.

k

Vik= .L [rjHik + M ik],
k~1

j corresponding to each k.
Value in dollars of each re
lease up through the kth
operation. When k=Ki , V
is the final value. Variable
used in calculation.

A = loss associated with re
scheduling an operation
earlier. (Variable used in
calculation-does not need
to be stored as a matrix.)
This is the loss associated
with having only a limited
production capability. The
definition of A and the
manner in which it is used
is brought out in the fol
lowing paragraphs.

Derivation of A

Where the available capacity is the
unscheduled production or setup time
on an operation any day, the available
regular hours are Cjd - L jd • The avail
able overtime hours any day are
Ojd-Cjd•

When L jd > Cjd, the algorithm
searches backwards (starting with the
current day) until a day is found
where

A day that satisfies this criterion pos
sesses adequate unused capacity to
process the job operation.

198

Or, if H ik > tCi> search for:

y

.L [Cjd - L jd + Ojd - Gjd] 2::: Hik'
d~w

an available time slot (regular and
overtime) in several adjacent days
(w to y). (The t figure is arbitrary).

If dik is the day that the scheduling
algorithm is working on, then "w"
and "y" vary backwards from "dik

-s+l" and "dik ," respectively, always
maintaining a numerical difference of
"s-L" (To understand how this is
modified to account for the L TP con
cept, see Step 7 of the algorithm.)

If the job is scheduled into this
slot, define the hours worked of task
(i, k) during regular time as

hI = min [Hik, d~ (C jd - L jd)]

and the overtime hours as hz = H ik -111.
This definition causes all of the regu

lar time hours to be used up before
any overtime is scheduled.

With these definitions and A de
fined as the loss associated with any
change in schedule caused by L jd > Cjd,

we get

A = .001a[Vik_ 1 + Mik

+ rj(h1 + L5h2)] + L5r;1z2'

The .001 is the percentage loss per day
of early release, assuming a 25 percent
per year carrying cost and 250 working
days in a year. The term within the
brackets is the sum of the expenditures
on labor and material through the cur
rent operation. Since all of these ex
penditures are moved forward in time
and "a" is the number of days of early
release, mUltiplying by .001a gives an
expression for the loss associated with
carrying the inventory additional time.
All calculations involving A or any
other expression that requires time
should use job start date as the rele
vant time criteria. The final term in
the expression for A is the loss asso
ciated with overtime payments. The
total overtime schedule cost is assumed
to be variable according to the number
of hours scheduled. For incremental
analysis, the regular time payroll is
considered fixed.

The expression for A does not take

The Journal of Industrial Engineering

into account cost changes which may
result from the required rescheduling of
predecessor operations of task (i, k).
Costs due to schedule changes in the
predecessor operations, such as addi
tional or less overtime or early re
leases, are eliminated by assuming that
over a large number of rescheduled
items the costs and savings due to these
changes balance to zero.

The assumption implies that if an
operation is rescheduled earlier, all of
the predecessor operations for this or
der must be moved forward on the
average the same number of days
early. In some cases, this may under
state the amount of earliness required
in earlier releases because jobs may now
be scheduled into full capacity periods,
where before the rescheduling they
were not; or, conversely, it could over
state the amount of early releases re
quired because capacity might now
exist at minimum setbacks where it
did not under the earlier schedule.

The primary benefit of this assump
tion is that it obviates the need to ex
amine the cost ramifications of a
schedule change through all predecessor
jobs. In any case, it should be clear
that an early release at operation k-y
for release i must be at least as great

Table 1. Definition listed alphabetically

a = number of days of early release
required

A = loss associated with rescheduling
Cjd= regular capacity matrix

d= day number
Di= list of completion due dates

Gjd= committed overtime capacity matrix
Hik=setup and labor production hours of

task (;, k)
hI = regular hours for any slot
h2 = overtime hours for any slot
i= release or order number
;=operation number

li= logical operation sequence for each
release

k=the index of operations
K,= number of operations required for ith

release
Ljd= unlimited capacity initial loading matrix

(becomes regular committed capacity
matrix)

lTP = logical time period
Mik= material costs

n = the length of an LTP
Ojd=overtime capacity matrix

rj = hourly rate
s=the minimum search length of adjacent

lTP's
task (;, k) = refers to the kth operation on release;

Vij = value of each release up through the
kth operation

Zj= percentage/1 00 of daily capacity

Volume XIX • No. 4

as the early release at operation k. This
is because there always must be a min
imum setback between operations. The
preceding assumption does not contra
dict this statement.

SCHEDULING ALGORITHM

Initial Load and Search

1. From Di and the associated set
backs, and the current in-house work,
load L jd with all i for all d we are con
sidering. Assign permanent large num
ber priorities to current work in pro
cess. At the end of this step all of the
day units in L jd are LTP's with n = 1.

2. Starting from the largest d and
going across allj and then d, test until
the first

y y

L (Lid + Cid) > L Cjd
d~w d~w

is located.

Pick Job 4

3. For all orders in this LTP, cal
culate the Pt+ST/O priority ranking.

4. For the top priority (smallest
number) order, test to see if resched
uling causes Lid to have an idle capacity
greater than Zi'

5. If the idle capacity is greater than
Zh search down the priority list until
an order is found, the rescheduling of
which would cause an idle capacity of
less than Zj. If none available, pick the
order which causes the smallest idle
capacity.

Find Cheapest Reschedule

6. Determine the search length, s,
from Hik and the equation below,
(X = H ok) rounding off L to the nearest
integer, s.

L = .65935 + 2.5500269X -
.26599786X2 + .029138699X8 -
.0014992671X4 + .000035603459X5
- .00000031582326X6.

4 There are several reasonable procedures by
which a job can be picked for rescheduling. The
method presented here has the objective of
minimizing average job lateness. Other proce
dures for picking a job are available and might
be more appropriate for certain situations. One
such method might involve criteria that seek to
determine schedules that are as level as possible.

April, 1968

This equation was derived by fitting a
polynomial to an arbitrary set of rea
sonable search length values. Some
typical values are listed below. 5

Hik L s
1 2.97 3
2 4.90 5
4 8.12 8

12 20.13 20

(If X:::;i set S= 1.)
(If X>37 set S= 1.3X, rounded)

7. Search backwards (starting with
current LTP) over adjacent (one or
more) LTP's whose sum of "n" (days)
is minimally greater than or equal to
"s" for enough available free time to
schedule task (i, k). Where "w" is de
fined as the start date of an LTP and
"y" is the end date of an LTP, this
search condition is defined as satisyfing

y

L (C jd - Ljd + Ojd - C jd) ~ Hik,
d~w

an available time slot in one or more
LTP's made up of the adjacent work
ing days "w" to "y". The "minimally
greater than" condition can be achieved
by adding, one at a time, LTP's from
the front (earlier time) and removing
L TP's from the back (later time) as
much as is possible without violating
the above constraint. If no LTP with
adequate space is found, return to
Step 4 and pick another job with less
hours than this task.

8. Calculate A for this task (i, k) and
the LTP that would be created by
combining the adjacent LTP's with
adequate space into a new single LTP.

9. Continue backward searching and
evaluating A's until an LTP (or com
bination of) is found where hi~Hik or
until the first day of the schedule is
reached. The search process for avail
able time capacity slots stops at this
point.

10. Of the feasible slots just evalu
ated, pick the smallest A and asso-

6 These values are strictly informal in the
sense that they attempt to be reasonable search
lengths for jobs of different lengths. If the search
length is too short, our schedule may leave large
amounts of unused time and if s is too long, we
may have to disrupt our current schedule too
much just to fit in one more job.

The Journal of Industrial Engineering

cia ted LTP's and schedule the order
into that slot by creating a new L TP
which is equal to the sum of these
other L TP's. Place all of the jobs from
the wiped out LTP's into this new one
in addition to placing the rescheduled
job in the newly created L TP. If no
slot with adequate capacity is found,
go to a special routine which could
handle this special case. (The sum of
LTP's may, of course, refer to only
one.)

11. If the length, n, of the new LTP
is greater than six days, (an arbitrary
choice) rank all of the jobs in it by
the priority criterion. Consider the en
tire LTP as a continuous time period
from w to Yi starting from y and the
jobs with the largest numerical prior
ity, place them in the LTP from the
back (y) toward the front (w). For
each task (i, k) in the LTP, retain the
start date before the creation of the
new L TP and the start date after this
continuous scheduling process internal
to the new LTP. For any task (i,k)
whose start date has changed, reload
its predecessors the same number of
days early (a) in L jd . This criterion of
change also applies to the new task
(i, k) that was placed in this L TP. The
process of continuously loading from
the back will shift all of the idle time in
this LTP to the front. If this idle time
is greater than or equal to one day, cut
off one day at a time from this LTP and
form new LTP's of one day's length
until the remaining idle time is re
duced below one day.

12. Return to Step 4 and continue
at the same pigeonhole until

L jd + C jd :::; Cid + Oid.

13. When the test in Step 12 is
passed, return to Step 2 and continue
to iterate through the algorithm. Step
2 this time starts from the last pigeon
hole (L TP) that the algorithm was
working on.

14. The procedure is complete when
all k. operations for each i have been
processed. The schedule of work is
Lid, C jd and associated information. The
resulting schedule may violate some
start day constraints because it re
quires the start date on a release to be
earlier than is feasible (for example,

199

200

GO TO
NEXT

LOWER
PRIORITY

PICK
DESIRABLE

JDBTO
RELOCATE

NO

HANDLE
SPECIAL

CASE

CONTINUE
WITH

SEARCH
FOR OTHER

OVERLOADED
CONDITIONS

NO

YES

START

LOADWDRK
MATRIX

TEST FOR
OVERLOAD

CALCULATE
PRIORITY RANK

FOR JOBS IN
OVERLOADED

CELL

JOB
CHOSEN

DETERMINE
LTP

SEARCH LENGTH

FIND FIRST
EARLIER MINIMUM

LENGTH LTP

CALCULATE
AFOR

THIS SLOT

CREATE NEW LTP
CORRESPONDING TO

SMALLEST A

IF NEW LTP IS LONG
SEQUENCE THE JOBS

IN IT

RESCHEDULE
PREDECESSORS

RETURN TO
OVERLOADED

CELL

SECTION TO
HANDLE START

DATA PROBLEMS

SECTIONS TO
HANDLE OTHER

PROBLEMS

Figure 1. Scheduling algorithm

The Journal of Industrial Engineering

NO

REDUCE LTP
LENGTH IF

POSSIBLE

Volume XIX • No. 4

before the necessary raw material is
scheduled for delivery). These viola
tions could be handled by the following
section.

Start Data Violation

15. Test for violation of start date
constraints.

16. For every violation check to see
if the scheduled required flow time
>available time. If so, print out an
infeasibility notice and proceed.

17. If a feasible schedule is possible
(flow time ~ available time) print out
the current schedule so a record is
main tained.

IS. For every violation, starting
from start date as fixed, reschedule the
violating orders forward into L jd and
fix (cannot be moved-assign perma
nent large value priority number) on
all operations.

19. Go to Step 2 of algorithm and
proceed backwards through the sched
ule again.

20. Stop after a final schedule that
does not violate start date constraints
is determined or after a given number
of cycles.

21. When the scheduling process is
finished, a schedule will be available in
terms of L TP's instead of days. If a
daily schedule is desired, it may be ob
tained by placing the job times within
the L TP end to end as in a Gantt
chart. The daily schedule can then be
read off the chart.6

Adjustment for limited Rapid-Access
Computer Memory

Third generation computer equip
ment has brought a vast increase in the
amount of memory storage available to
the computer programmer. Large-core
storage, drum storages and disk stor
ages are typical of the types of devices
that are used to store a large amount
of information. However, even with
these added capabilities in terms of
memory storage, many significant job
shop operations would be too large to
have all resident data residing in high
speed memory. The algorithm did not
pay any attention to the problems of

6 As a result of the above process, all excess
work will be shifted to the front of the matrix.

April, 1968

maneuvering data among the various
memory facilities of a computer and
the following section is devoted to pre
senting a method by which the algo
rithm could be implemented on a com
puter having a limited amount of
high-speed core memory plus an addi
tional amount of slower memory such
as disk or tape which is capable of
storing all of the required information.

1. The first step in the process is to
load the unlimited capacity matrix as
described in the scheduling algorithm.
The same process as that described be
low could be used to perform this task.

2. Once the entire unlimited capac
ity matrix has been loaded and exists
sequentially arranged in disk or tape
storage, we proceed to the load leveling
process.

3. The first step is to bring in the
entire first row; in other words, to
bring in all the cells corresponding to
one machine for all days. The last day
in the row is checked to see if it is over
loaded. If it is not, we simply put this
information back on the disk or tape
and bring in the second machine's com
plete row. As we proceed down the list
in this fashion, we will run across a
day-machine combination which is
overloaded.

4. We now proceed to level the load
on this day by shifting some of the jobs
up in time according to the criteria
presented in the scheduling algorithm.
Since all the days for this one machine
are in core memory, we can do this
rapidly. However, the process cannot
be completed because those jobs which
are rescheduled earlier and have pre
decessors will typically have their
predecessors on machines which are
still on disk or tape storage. Therefore,
when such a predecessor requires
change, it is put on a list of changes to
be made when the machine to which
the change pertains arrives in core.
The idea of using this list as in terme
diate storage is the key element to the
present procedure. Only the job iden
tification and the number of days ear
lier it is rescheduled must be stored.
As previously mentioned, this resched
uling movement of a predecessor may
create a newly overloaded day. Since
any such overloading is earlier in time,

The Journal of Industrial Engineering

it will be leveled out later in the pro
cess.

5. When the last day in the machine
row being analyzed is no longer over
loaded, it is put into disk storage and
replaced in core by the next machine
row. The list of stored items is then
examined to see what changes apply to
the new machine in core. These changes
are made and the last day of this ma
chine row is examined to see if it is
overloaded (as we did in Step 3). This
process is continued through the entire
matrix proceeding across all machines
at anyone day, then moving one day
earlier and going down all machines.
Each successive time a row is brought
into core, the last day from the previ
ous time is not brought in because it is
already leveled. It is obvious that if
there is a total of M machines the
longest an item can stay on the list is
M-l cycles. The average item on the
list will remain on the list MI2 times
before it is unloaded into its correct
machine row. If the machines are
grouped according to some logical se
quence and numbered, we can reduce
this figure considerably below the ex
pected MI2 figure for random ordering.

As each cell is left, it is not over
loaded and can not become overloaded
because any subsequent changes in
predecessors and basic scheduling in
volve only days that are earlier in time
that will be reached as the algorithm
moves toward earlier days.

For purposes of simplicity, we have
treated each day as if it were scheduled
independently, ignoring the LTP con
cept discussed earlier. It turns out,
however, that this presents no probJem
if the LTP is brought into core as a
whole until every day that it covers is
later than the numerical day on which
the algorithm is working. If the LTP is
n days long, it will be processed n times
as this method passes each machine
day by day earlier. The reshuffling of
the jobs in the LTP as suggested in
Step 11 of the scheduling algorithm
should not be done until the last time
through the LTP. If the above method
were implemented on a third genera
tion high-speed processor, the proce
dures would typically be limited by the
access time to the slower disk (or other)

201

storage. If the matrix is D days long by
M machines deep, and we have enough
high-speed memory capacity to access
q rows at a time instead of one row at a
time as suggested above, the total num
ber of accesses to the slower medium
would be (DXM)/q times for each pass
through the matrix. The basic sched
uling method, without adjustments, in
volves two passes through the matrix.
Therefore, if each access to disk and
transfer required p seconds, the total
time for the routine would be

2p(D X M)
Computer Run Time = ----

q

If, as assumed, the modified scheduling
method just presented in combination
with a computer is search and access
time bound, it is clear that, if transfer
rates from peripheral storage remain
very high as high-speed core (or other)
memory is doubled, the time to per
form the scheduling algorithm will be
halved because twice as many rows
can be entered and accessed at anyone
time.

CONCLUSIONS

In the aerospace industry, manage
ment typically makes up for a lack of
control and forecasting ability by re
leasing orders very early and having
extra large amounts of inventory pres
ent in the job shop. As the management
of such a job shop acquired experience
in the use of a forecasting and workload
balancing routine, the level of uncer
tainty about future schedules in the job
shop would diminish and the amount of
pad time or inventory back-up needed
at each operation to compensate for
this uncertainty should become much
less. Over the long run, this experience
with the scheduling method would in
still confidence and provide savings
through reduced production and inven
tory costs for the typical job shop. The
lower inventory costs would be
achieved by the reduced flow times and
faster inventory turnover, while more
efficient production would occur
through improved workflows.

Low work-in-process carrying costs
can be achieved only by shortening

202

flow times and performing production
operations as late as possible without
impairing delivery schedules. In order
to accomplish this objective, the
scheduling algorithm starts from a
given due date and schedules back
wards, earlier in time, with a setback
procedure for every part. Not only
would the length of this setback be
come shorter as management acquired
experience with the use of the sched
uling routine, but because all of the
work in the shop is done as late as possi
ble, the excess capacity on each ma
chine will tend to be moved towards the
start of the period under consideration.
One result might be that the first imple
mented schedules, determined by this
algorithm would cause certain ma
chines to have idle periods for the first
days in the schedule. This would be
true even though safety factors were
built in to allow for unforeseen slip
pages. Management would then have a
decision as to whether it is more de
sirable to carry excess inventory or to
have idle labor. There is no way out of
this conflict; the very process of ef
ficiently scheduled production insures
that each time a new schedule is de
termined the excess capacity built up
from previous schedules is brought for
ward. However, with the aid of long
range workload balancing and sched
uling, it may be possible for manage
ment to analyze future schedules for
the possibility of obtaining additional
work to fill periods of excess capacity.

Two final limitations of the sched
uling method presented here should be
mentioned. The first is that the actual
schedules produced by the workload
balancing algorithm will not be valid
for the latest days in the schedule.
These days are underloaded because
they include only those projects that
are just finishing. The second limita
tion has already been mentioned and
concerns the point that the suggested
algorithm ignores the existence of the
possibility of manufacturing a part or
product by more than one machine se
quence. It assumes that the vector, J,
is unique for each order release. How
ever, if the difference between two
alternative sequences that can be used
to manufacture the part can be repre-

The Journal of Industrial Engineering

sen ted simply by one-for-one substitu
tions (for example, this would hold true
for different yet identical machines),
this assumption can be modified. A sec
tion in the algorithm could evaluate
which of several identical machines is
least loaded and would be the best to
process an operation on a part.

REFERENCES

(1) BULKIN, COLLEY, STEINHOFF, "Load Fore
casting, Priority Sequencing, and Simula
tion in a Job Shop Control System," jj;[an
agement Science, October, 1966.

(2) CALICA, A. B., "Production Order Sequenc
ing," IBlv! Systems Journal, Volume 4, No.
3, 1965.

(3) COBHAM, A., "Priority Assignment in Wait
ing Line Problems," Operations Research,
Volume 2, No.1, February, 1954.

(4) CONWAY, RICHARD W., "Priority Dispatch
ing and Job Lateness in a Job Shop,"
Journal of Industrial Engineering, Volume
XVI, No.4, July-August, 1965.

(5) COKWAY, RICHARD W., "Priority Dispatch
ing and Work-in-Process Inventory in a Job
Shop," Journal of Industrial Engineering,
Volume XVI, No.2, March-April, 1965,
pp. 123-130.

(6) CONWAY, R. W., MAXWELL, W. L., AND
MILLER, L. W., Theory of Scheduling, Ad
dison-Wesley Publishing Company, Read
ing, Massachusetts, 1967.

(7) GERE, WILLIAM S., JR., "Heuristics in Job
Shop Scheduling," Management Science,
November, 1966.

(S) HUISH, D. R., "Rescheduling Flattens Zig
Zag Production Curve," American jj;[a
chinist, July 7, 1952.

(9) JOHNSON, S. M., "Optimal Two and Three
Stage Production Scheduling," Naval Re
search Logistics Quarterly, Volume I, No. 1.

(10) KILBRIDGE, M. Al-.'D WEBSTER, LEON, "A
Method of Solving a Class of Scheduling
Problems," Operations Research, Fall, 1960,
S: Supplement 2:B-131 (Abstract).

(11) MAGEE, J. F., Production Planning and In
ventory Control, McGraw-Hill Book Com
pany, New York, 1955.

(12) MANl<""E, ALAN S., "On the Job Shop Sched
uling Problems," Operations Research,
March-April, 1960.

(13) MUTH, J. F., AND THOMPSON, G. L., Edi
tors, Indzlstrial Scheduling, Prentice-Hall,
Englewood Cliffs, New Jersey, 1963.

(14) PAGE, E. S., "An Approach to the Schedul
ing of Jobs on Machines," Journal of the
Royal Statistical Society (Series B), 1961.

(15) SALVESON, M. E., "A Problem in Optimal
1vIachine Loading," }J anagement Science,
April, 1956.

(16) SANDEMAl."f, P., "Empirical Design of
Priority Waiting Times for Job Shop Con
trol," Operations Research, July-August,
1961.

(17) SIMON, H. A., "On the Application of Servo
mechanism Theory in the Study of Produc
tion Control," Econometrica, April, 1952.

(1S) SISSON, R. L., "Sequencing Theory," in
Progress in Operations Research, R. L.
Ackoff, Editor, Volume I, John Wiley and
Sons, New York, 1961.

Volume XIX . No. 4

